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Abstract 

The frequency distribution of electron-density-func- 
tion values encountered in a protein crystal has a 
characteristic shape and may be predicted for a pro- 
tein with unknown spatial structure. It is shown that 
various methods of refinement of structure-factor 
phases (frequency-restrained refinement, histogram 
matching, density modification) may be regarded as 
various approaches to the same problem of obtaining 
the electron-density distribution which agrees with 
the X-ray experimental data and has a prescribed 
histogram. Test computations illustrate the relative 
efficiency of the methods analyzed. 

0. Introduction 

The method of isomorphous replacement, which is 
used to solve the phase problem in protein crystal- 
lography, fails sometimes to give the desired quality 
of electron-density-distribution maps. Additional 
ways of improving maps are needed. One of them is 
using, or rather trying to use, the knowledge of the 
mathematical properties of the electron-density- 
distribution function, in addition to the data from 
X-ray experiments. In previous papers (Lunin, 1986, 
1988; Lunin, Urzhumtsev & Skovoroda, 1990; Lunin 
& Skovoroda, 1991), we showed that a valuable source 
of information on a protein can be a histogram corre- 
sponding to a finite-resolution image of its distribu- 
tion function. Analogous approaches were suggested 
by Luzzati, Mariani & Delacroix (1988), Harrison 
(1988) and Zhang & Main (1990). 

Let us recall the main point. Let p(r) be a function 
defined for points r of a unit cell V and 

F(s) exp [iq~(s)] = ~ p(r) exp[2zri(s,r)]dV, 
V 

be its structure factors. 
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By the image of p(r) at a resolution d we mean 
the function 

pa(r)=(1/ lvI)  E F(s)exp[i~o(s)] 
Isl<i/a 

x exp [-21ri(s, r)]. (1) 

We define the cumulative function for the image Pd (r), 

N(t)  = (1/I Vl) mes {r: pd(r) < t}, 

and its density, 

d 1 d v(t)=~t N(t)=Iv~ I d t m e s  {r: pal(r)----- t}. (2) 

Here I VI is the total volume of the unit cell and 
mes{r: A} is the volume of the part of the cell 
occupied by points r satisfying condition A. The value 
v(t)At is the probability that the value pa(r) will 
belong to the interval (t, t + At) for a random choice 
of point r in the cell. It was shown earlier (Podjarny 
& Yonath, 1977; Lunin, 1986; Zhang & Main, 1990) 
that, if p(r) is the function of electron-density distri- 
bution in a protein, the graph of the function v(t) 
has a characteristic shape. An approach to calculating 
the function v(t) for proteins with unknown space 
structure has been suggested (Lunin & Skovoroda, 
1991). [As before, it is called here the histogram of 
the image pa(r).] We denote this a priori defined 
histogram as va(t) and refer to it as a 'standard' (for 
a given object and a given resolution). 

In practice, the values of phases ~p(s) and of moduli 
F(s) used to calculate the image (1) often contain 
errors. Moreover, part of the phases, and of moduli 
as well, may be dropped out of calculation. It results 
in a distorted image pd(r). 

In this paper we shall show how the a priori knowl- 
edge of the histogram va(t) [or, which is equivalent, 
of the cumulative function Na(t ) ]  can be used for a 
more exact determination of the phases and moduli 
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in the synthesis (1), i.e. for obtaining a more interpret- 
able synthesis. More precisely, it will be shown that 
various methods of improving the quality of maps 
[frequency-restrained structure-factor refinement 
(Lunin, 1988), histogram specification (Harrison, 
1988), histogram matching (Zhang & Main, 1990) 
and the well known 'density modification' (Sayre, 
1952; Hoppe & Gassmann, 1968; Simonov, 1976; 
Podjarny, 1987)] can be treated as various approaches 
to obtain an image pd(r) that would agree with the 
X-ray experimental information and possess the pre- 
scribed 'standard' histogram. 

For the sake of simplicity, in this paper all moduli 
F(s) necessary for calculating the synthesis (1) will 
be assumed to be known exactly and equal to F°(s) 
and all the phases ~(s) to be known approximately 
and requiring refinement. A more general problem 
when either some moduli are unknown or some 
phases are known exactly may be regarded in a similar 
way. 

1. Frequency-restrained structure-factor refinement 
(FRR) 

Let v"(t) be the standard histogram corresponding 
to the image pal(r) desired. The problem of phase 
refinement can be formulated as follows: 

Problem 1. For known structure-factor moduli 
{F°(s)}, the values of phases {~o(s)} should be chosen 
so that the function 

pd(r)=(1/lVI) Y~ F°(s)exp[ko(s)] 
Isl<- l / a 

x exp [-27ri(s, r)] (3) 

has the histogram v"(t), Le. that 

1 d 
IvI dt 

- -  mes {r: pa(r) -< t} = v"(t). 

The most direct approach to solving the problem is 
(a) to formulate a criterion of similarity for the 

standard histogram v a (t) and a histogram v c (t) corre- 
sponding to some trial values of the phases {tp~(s)}, 
for example 

Q[v¢]= ~ to(t)[vc(t) - v"(t)] 2 dt (4) 
- - o o  

[where to(t) is a weighting function]; 
(b) then to find refined phase values by minimizing 

the criterion Q[v c] somehow. More precisely, let 
{CO(s)} be trial phase values. We calculate the syn- 
thesis 

pC(r)=(1/lV[) Y. F°(s) exp[iq~(s)] 
Isl-<l/d 

x exp [-2rri(s,  r)], 

find its histogram 

d N~ 1 d p~ = - - -  ~ mes {r: (r) <- t} vC(t) ~ (t)-Iv ] dt 

and determine the value Q of disagreement between 
the calculated and the standard histogram (4). This 
value is a function of trial phase values {~#C(s)} with 
Is I <- 1/d and the problem can be reduced to minimiz- 
ation of the function Q[ v c ] = Q({~p(s)}). From a view- 
point of computation this problem is similar to those 
of phase refinement (Sayre, 1972; Lunin, 1985) and 
can be solved, e.g. by the methods of gradient descent. 
The examples of application of such an approach 
have been given by Lunin (1988) and Lunin & 
Skovoroda (1991). Practical details of this minimiz- 
ation process will be published elsewhere. 

2. Histogram-matching (HM) method 

2.1. The transformation restoring histogram 

Let p(r) be a function defined for the points of the 
unit cell and v(t) be its histogram (2). Assume this 
histogram does not coincide with the standard va(t). 
If we want to transform the function p(r) in such a 
way that the transformed function p"( r )  would have 
the prescribed histogram va(t) and retain the struc- 
tural information that p(r) contains we should require 
that this transformation r: p-> p"  has the following 
properties: 

1 d 
(a) IV ~ dt  mes {r: p " ( r )  <_ t} = v" (  t) (5) 

(b) if p ( r l )>  p(r2), then p " ( r , ) >  p"(r2) 

and, vice versa, 

if p"( r l )  > p"(r2), then p(rl) > p(r2). (6) 

The second property means that the transformation 
~" does not deform the level surfaces of the function 
p. In particular, local maxima of p(r) remain those 
of pro(r), though their values change. We call trans- 
formation r possessing the properties (a) and (b) 
'nonlinear stretching restoring histogram v~(t) ' 
(NSRH). 

2.2. Construction of the nonlinear stretching restoring 
histogram ( NSRH) 

It follows from condition (6) that the value o fp" ( r )  
depends upon the value of p(r) only and is indepen- 
dent of the point at which it is regarded. This means 
the transformation of the prescribed function p(r) 
has the form 

r: p ( r )~  p " ( r ) =  Ap[p(r)], (7) 

where Ap(t) is the function of the real parameter t. 
Here the modifying functions A,(t) generally are 
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different for various p(r). By (6), the function )to(t) 
should increase monotonically in the interval 

Pmin = min p(r) -< t -< max p(r) = Pmax- 

For the property (5) to occur, it is necessary that 
Ap(t) be such that for all t 

' i i-~-mes {r: Ao[p(r)]-< t}= N " ( t ) =  v"(r) dr. (8) 

- - o o  

The function Ao(t) is monotonic within the interval 
[Pmin, Pmax], therefore (8) is equivalent to the condi- 
tion that, for Pmin ~ t--< Pmax,  

No(t) = (1/] VI) mes {r: p(r) - t} 

= (1/I V]) mes {r: Xo[p(r)]<-Xo(t)} 

= N"[Xo(t)]. 

Thus, the function Ap(t) should satisfy the equation 

N"[Ap( t ) ]=  Np(t) for P m i n ~ t ~ P m a x  , (9) 

where N"(t)  is an a priori prescribed cumulative 
function and No(t) is a cumulative function corre- 
sponding to the function p(r). 

Since for pmi,<t<Pmax the function N"(t)  
increases strictly monotonically (it cannot have 
constant intervals here because it corresponds to a 
finite-Fourier series), (9) has a unique solution for 
each t ~ (Pmin, Pmax)- 

Thus, the image with properties (5)-(6) has the 
form (7) where the modifying function Ap(t) is 
uniquely defined on the interval [Pm~., Pmax] by (9). 
In other words, the transformation ~- of the function 
p(r) can be done in two stages: 

(a) for the function p(r) one calculates the cumu- 
lative function 

No(t)=(1/[V[)mes{r:p(r)<-t  } (10) 

and defines the modifying function ;to(t) from 

Na(Ap) = Np(t); (11) 

(b) then one performs the modification 

r[p ] = p" (r) = ao[p(r) ]. (12) 

requirements that 
(a) the functions p(r) of form (3) should have the 

histogram va(t) and 
(b) the function p(r) of form (3) should possess 

the property z[p] = p(r) [where NSRH ~" is defined 
by (10)-(12)], so that problem 1 can be equivalently 
reformulated as 

Problem 1'. For the known moduli {F°(s)} of struc- 
ture factors the values of phases {~(s)} should be 
chosen so that the function 

p~(r)=(1/lvl) E F°(s)exp[iq~(s)] 
Isl<l/d 

x exp [-27ri(s, r)] 

has the property 

;tp[pe (r)] = pa (r), (14) 

where the function Ap(t) is defined by the condition 

Na(Ap) = Np(t) = (1/[ V[) mes {r: pal(r) --< t}. 

TWO approaches are possible to solve the problem 
(Lunin, 1985). We shall concentrate on one of them 
closely connected with histogram matching and 
density modification. 

Equation (14) is equivalent to the following system 
of equations for structure factors: { for Isl___ 1/d 

0 =  ~:,{r[p]} I for Is]> 1/d 
~o(s)=arg 3:,{r[p]} for Isl_ I /d ,  

where [3:,[ and arg (3:s) are the modulus and the phase 
of the s-indexed structure factor corresponding to the 
function z[p](r). 

If we reduce the system to 

¢ ( s ) = a r g  ~ ,{ r [p ]}=  ~s({¢(s)}), I s l -  < 1/d, 
we can try to solve it by a simple iteration method. 
It means that starting from a set of phases {~o(S)} 
iterations are carried out by the formula 

~o+,(s)= ~.({~0.(s)}), Isl -< lid. (15) 
The question whether this process converges and, if 
it does, then to what remains open here. 

2.3. lterative phase refinement 

The solution peX(r) of problem 1 (§ 1) cannot be 
changed by the transformation r defined by (10)-(12) 
[since it inherently has the 'right' histogram, Np(t) = 
Na(t) and Ap( t ) -  = t], therefore 

r[peX] = peX. (13) 

On the other hand, if the function of form (5) 
satisfies condition (13), it also satisfies Ap(t)-= t and, 
consequently, N"(t)  = Np(t), which means it has the 
'right' histogram. This implies equivalence of the 

2.4. Basic procedure of histogram matching 

The process (15) can be broken down into four 
steps: 

(1) a synthesis p,(r) is calculated with exact values 
of moduli {F°(s)} and approximate values of phases 
{,p.(s)}; 

(2) its cumulative function 

N.(t)=(1/IVl) mes {r: p,(r)--- t} 

is defined to find the NSRH 

An(t) from Na[A,( t ) ]  = N,( t ) ;  
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(3) the synthesis is modified as 

pT(r) = X,,[ p.(r)] ;  

(4) the structure factors F."(s) exp [i~."(s)], corre- 
sponding to the modified function p."(r), are calcu- 
lated, and their phases are taken as a next approxima- 
tion, so that 

(~.+1 (S) = (~ ~(S). 

This is the principal scheme of the method of 
histogram matching (Harrison, 1988; Zhang & Main, 
1990). It is a possible way of solving problem 1' for 
the solution of the 'phase part '  of (14) by a simple 
iteration method. 

3. Density-modification (DM) method 

We readily see that the procedure described in § 2.4 
differs from the 'classical' method of electron-density 
modification (see, for example, the paper by Pod- 
jarny, 1987) but in a more complicated construction 
of the modifying function A,(t). In the 'classical' 
scheme the modifying function has the same form in 
all refinement runs. It may be, for example, 

= P/Pmax) ] f o r p  ~[3(p/p~m.)ax)22( ( . )  3 2 0  

X,(p) L0 for p < 0 .  (16) 

Here again the modifying function A.(p)  depends 
on the transformed function p,(r)  or, to be more 
exact, on its maximum value P(m"2x- 

TO establish a closer connection between the 
modifying functions in HM and DM methods, we 
will consider a limiting case - the construction of a 
NSRH for an electron-density synthesis calculated 
with random phases. 

Fig. l ( a )  shows histograms corresponding to a 
synthesis constructed with the exact values of struc- 
ture-factor moduli and phases and to a synthesis 
constructed with the exact values of moduli and ran- 
dom values of phases. The histograms with inexact 
phases are between these two extreme situations. 

Fig. 1 (b) shows the plots of the cumulative function 
Ne(t) corresponding to the exact synthesis and of 
the function Nr(t) corresponding to a synthesis with 
random phases, and Fig. l (c)  is the plot of the modify- 
ing function A (t) defined by Nr( t )  = Ne[A (t)]. 

It can be seen in Fig. l (c)  that the distinguishing 
features of the transformation-restoring histogram if 
the synthesis to be transformed has large errors are 

(a) a decrease of small values of electron density 
(segment BC) and 

(b) an increase of large values of electron density 
(segment CD). 

Segments AB and DE can be present or not 
depending on the interrelation of the values P~.i., 

r e r 
Prnin, flmax and Pmax" 

We readily see that the central part of the modifying 
function plot in the HM method is much the same 

as the plot of modifying functions in the 'classical' 
DM method. Thus, the modification (16) of the elec- 
tron-density distribution function with large errors in 
the modified function can be treated as an approxi- 
mate transformation restoring the right histogram. In 
this way we can also think of the DM method as 
being implicitly based on the specific form of the 

v(t) 

p.~rw~ p e  P2,, ~ , ,  
(a) 

A 

p,r. pe 
mW~ 

I 

B 

Nr(') ."/ I I  
- / ~ /  II I 

D E 

(b) 

X(t) 

O e 
~ x  

! B /"  

(c) 

~(t) '= t 

D i E  

p r  
m z  o 

Fig. 1. (a) Histograms corresponding to syntheses calculated with 
exact ( ) and random ( . . . . . .  ) phases. (b) Cumulative func- 
tions for exact- ( ) and random-phased ( . . . . . .  ) syntheses. 
(c) The transformation A(t) restoring histogram for random- 
phased synthesis. 
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Table 1. The results of phase refinement (all noncentrosymmetric phases were varied) 

Q¢ Qs R 
Number of runs Number of runs Number of runs 

Method 0 25 75 0 25 75 0 25 75 
FRR 72 ° 75 ° -- 0.98 0.96 . . . .  
GM 72 ° 71 ° 73 ° 0"98 0-96 0"96 0"144 0.021 0.008 
DM 72 ° 81 ° 81 ° 0"98 1.01 1"03 0-600 0.800 0.848 

Table 2. The results of  phase refinement (strongest noncentrosymmetric phases were varied) 

Method 
FRR 
GM 
DM 

Q~ Qs R 
Number of runs Number of runs Number of runs 

0 25 75 0 25 75 0 25 75 
72 ° 53 ° - -  0"98 0.86 . . . .  
72 ° 59 ° 58 ° 0"96 0.91 0"88 0" 144 0.082 0.066 
72 ° 55 ° 54* 0"96 0.88 0"88 0.600 0-741 0.742 

his togram for crystals of  biological macromolecules .  
The difference f rom the H M  method is that  its modify- 
ing function does not restore the his togram exactly, 
outlining only the directions in which the synthesis 
should change.  

For small errors in s t ructure-factor  phases (and in 
the respective modified syntheses) the modify ing 
funct ion of  the H M  method  becomes close to the 
identical t r ans format ion  A(t)-----t. In this case, the 
funct ion (16) distorts the histogram, ra ther  than 
restores it. So, one can expect  the D M  method  to 
work less well than the H M  method in this case. 

4. Test comparison of the methods 

Several tests were carr ied out to compare  the 
efficiency of  the above methods.  The modul i  and 
phases of  the structure factors calculated from an 
atomic model  of  cytochrome b5 (Mathews,  Argos & 
Levine, 1972) were used in these tests to check the 
accuracy of  the results. In the phases of  noncentro-  
symmetr ic  reflections calculated from the model  (they 
will in future be referred to as 'exact ' )  we in t roduced 
a r andom error  distr ibuted by Von Mises 's  law 

P(Aq,) = exp (X cos A~p). 

The pa ramete r  A was chosen equal to 0.5, which 
provided a mean  error of .~bout  70 °. The phases of  
centrosymmetr ic  reflections were taken as exact. 
Three methods  were used to refine the s tar t ing-phase 
values: 

(i) F R R  minimizing criterion (4) [with the weight- 
ing funct ion w(t)= 1]; 

(ii) G M  method;  
(iii) D M  method  with the modifying funct ion (16). 
The his togram corresponding  to the synthesis 

calculated with the exact  phase  values was taken as 
the s tandard  his togram for F R R  and G M  methods.  
In the course of  refinement we controlled three 

characterist ics of  the current  set of  phases:  

Q~ = {j" [ p ~ X ( r ) -  p ~ ( r ) ]  2 d Vr/S [ p ~ X ( r ) ]  2 d V,}'/2 
F ~ R = E I F :  ~ -  s I / E I F , ~ I  

where F ~  are s t ructure-factor  moduli  for the modified 
synthesis p "  in GM and  DM methods.  

4.1. Phase refinement of  all noncentrosymmetric reflec- 
tions 

The phases of  all noncent rosymmetr ic  reflections 
were variable parameters  in this test. The results of  
phase refinement by various methods  are listed in 
Table 1. It can be seen from the table that  none of  
the methods  was successful. 

4.2. Phase refinement of  strong centrosymmetric reflec- 
tions 

The phases of  the strongest noncent rosymmetr ic  
reflections were varied in this test (127 reflections 
from 519). The phases of  weak noncent rosymmetr ic  
reflections were fixed at wrong values, with a r andom 
error  introduced.  Table 2 shows the results of  phase 
refinement. 

One can see from the table that all three methods  
yielded similar results, a l though the F R R  method  
showed a more rapid convergence.  The failure of  the 
first test can be accounted  for by the fact that the 
his togram may  be improved by s imul taneous local 
movements  of  phases of  multiple weak reflections. 
The prohibi t ion of  phase ' synchronizat ion ' ,  which 
al lowed the his togram to be improved only on account  
of  strong harmonics ,  changed  qualitatively the course 
of  the refinement.  
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Abstract 
A discussion is given of the symmetry groups of 
quasiperiodic systems. This is done in a formalism 
that uses space groups with dimension larger than 
three. Three main types are distinguished: modulated 
crystal phases, incommensurate composite structures 
and quasicrystals. For these the differences and 
similarities are discussed and the canonical embed- 
ding in higher-dimensional space is given, which 
requires some generalizations of earlier definitions. 
The equivalence relation between space groups for 
quasiperiodic systems is different from that for 
ordinary space groups, because of the presence of a 
distinct physical space. Apart from higher- 
dimensional space groups, some quasiperiodic sys- 
tems have self-similarity properties. Examples are 
given and the relationship with space-group symmetry 
is discussed. 

1. Introduction 
In the past decades one has found an ever increasing 
number of structures with perfect order, but without 
lattice periodicity. These aperiodic 'crystals' are 
characterized by the fact that their diffraction spots 
are sharp and may be labelled by a finite number of 
indices, although this number may be larger than the 
dimension of the physical space. This means that the 
basis vectors are linearly dependent,  but there is no 
linear combination with integer coefficients of their 
vectors which is zero, apart from the trivial case that 
all coefficients are zero. Such structures have been 
called quasiperiodic. Actually, lattice periodicity is a 
special case of quasiperiodicity. Then, the number of 
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integer indices is equal to the dimension of the space. 
Quasiperiodic systems are by no means rare (Janssen 
& Janner, 1987; Cummins, 1990). Among the minerals 
the common feldspar may have this property, many 
dielectrics, like quartz, show it in a certain tem- 
perature interval, and some years ago one had 
artificially made quasicrystals, which also belong to 
this category. 

One can construct mathematical models of struc- 
tures that are still more general, but nevertheless also 
perfectly ordered. For example, there are functions 
that are almost periodic (in the mathematical sense), 
but not quasiperiodic. (A quasiperiodic function is 
always almost periodic.) There are chains that can 
be constructed on a very simple deterministic 
algorithm, such as the Thue-Morse  chain. Also, regu- 
lar fractals, like the Sierpinski gasket, are perfectly 
ordered, but not quasiperiodic. All these systems 
touch on the border of crystallography and seek a 
generalization of crystallographic concepts. This can 
most easily be done for quasiperiodic systems to 
which we shall restrict our considerations here. 
Because they are in almost every respect similar to 
crystals, we shall call them aperiodic crystals, 
although, as the name indicates, generally they lack 
lattice periodicity. 

Because there is no lattice periodicity the usual 
symmetry description for lattice periodic crystals 
breaks down. However, as we shall see, we can recover 
lattice periodicity because quasiperiodic systems are 
intersections of a lattice periodic system in a higher- 
dimensional space with a hyperplane that represents 
physical space. The symmetry description then comes 
down to the description of the higher-dimensional 
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